direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C22.32C24, C6.1542+ 1+4, (C4×D4)⋊10C6, C4⋊D4⋊8C6, C22⋊Q8⋊7C6, C22≀C2⋊6C6, (D4×C12)⋊39C2, C42⋊10(C2×C6), C4.4D4⋊8C6, C42⋊2C2⋊3C6, (C4×C12)⋊41C22, (C6×D4)⋊37C22, C24.18(C2×C6), (C6×Q8)⋊28C22, (C2×C6).358C24, C22.D4⋊4C6, (C2×C12).667C23, (C22×C12)⋊49C22, C23.11(C22×C6), (C23×C6).17C22, (C22×C6).93C23, C22.32(C23×C6), C2.6(C3×2+ 1+4), C4⋊C4⋊15(C2×C6), (C2×D4)⋊5(C2×C6), (C2×Q8)⋊4(C2×C6), C2.15(C6×C4○D4), (C3×C4⋊D4)⋊35C2, (C3×C4⋊C4)⋊71C22, (C2×C22⋊C4)⋊13C6, C22⋊C4⋊15(C2×C6), (C6×C22⋊C4)⋊33C2, (C22×C4)⋊10(C2×C6), C6.234(C2×C4○D4), (C3×C22⋊Q8)⋊34C2, (C3×C22≀C2)⋊14C2, C22.4(C3×C4○D4), (C2×C6).52(C4○D4), (C3×C4.4D4)⋊28C2, (C2×C4).25(C22×C6), (C3×C42⋊2C2)⋊12C2, (C3×C22⋊C4)⋊69C22, (C3×C22.D4)⋊23C2, SmallGroup(192,1427)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C6 — C22×C6 — C3×C22⋊C4 — C3×C4⋊D4 — C3×C22.32C24 |
Generators and relations for C3×C22.32C24
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=f2=g2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 434 in 250 conjugacy classes, 146 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C23×C6, C22.32C24, C6×C22⋊C4, D4×C12, C3×C22≀C2, C3×C4⋊D4, C3×C4⋊D4, C3×C22⋊Q8, C3×C22.D4, C3×C4.4D4, C3×C42⋊2C2, C3×C22.32C24
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C4○D4, C24, C22×C6, C2×C4○D4, 2+ 1+4, C3×C4○D4, C23×C6, C22.32C24, C6×C4○D4, C3×2+ 1+4, C3×C22.32C24
(1 19 6)(2 20 7)(3 17 8)(4 18 5)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 47 33)(14 48 34)(15 45 35)(16 46 36)(29 39 43)(30 40 44)(31 37 41)(32 38 42)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 42)(14 43)(15 44)(16 41)(17 27)(18 28)(19 25)(20 26)(29 48)(30 45)(31 46)(32 47)(33 38)(34 39)(35 40)(36 37)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 33)(2 39)(3 35)(4 37)(5 31)(6 47)(7 29)(8 45)(9 40)(10 36)(11 38)(12 34)(13 19)(14 26)(15 17)(16 28)(18 41)(20 43)(21 30)(22 46)(23 32)(24 48)(25 42)(27 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 12)(4 10)(5 22)(7 24)(13 15)(14 41)(16 43)(18 28)(20 26)(29 46)(30 32)(31 48)(33 35)(34 37)(36 39)(38 40)(42 44)(45 47)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 44)(14 41)(15 42)(16 43)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 46)(30 47)(31 48)(32 45)(33 40)(34 37)(35 38)(36 39)
G:=sub<Sym(48)| (1,19,6)(2,20,7)(3,17,8)(4,18,5)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,47,33)(14,48,34)(15,45,35)(16,46,36)(29,39,43)(30,40,44)(31,37,41)(32,38,42), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,48)(30,45)(31,46)(32,47)(33,38)(34,39)(35,40)(36,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,33)(2,39)(3,35)(4,37)(5,31)(6,47)(7,29)(8,45)(9,40)(10,36)(11,38)(12,34)(13,19)(14,26)(15,17)(16,28)(18,41)(20,43)(21,30)(22,46)(23,32)(24,48)(25,42)(27,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,12)(4,10)(5,22)(7,24)(13,15)(14,41)(16,43)(18,28)(20,26)(29,46)(30,32)(31,48)(33,35)(34,37)(36,39)(38,40)(42,44)(45,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,44)(14,41)(15,42)(16,43)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,46)(30,47)(31,48)(32,45)(33,40)(34,37)(35,38)(36,39)>;
G:=Group( (1,19,6)(2,20,7)(3,17,8)(4,18,5)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,47,33)(14,48,34)(15,45,35)(16,46,36)(29,39,43)(30,40,44)(31,37,41)(32,38,42), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,48)(30,45)(31,46)(32,47)(33,38)(34,39)(35,40)(36,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,33)(2,39)(3,35)(4,37)(5,31)(6,47)(7,29)(8,45)(9,40)(10,36)(11,38)(12,34)(13,19)(14,26)(15,17)(16,28)(18,41)(20,43)(21,30)(22,46)(23,32)(24,48)(25,42)(27,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,12)(4,10)(5,22)(7,24)(13,15)(14,41)(16,43)(18,28)(20,26)(29,46)(30,32)(31,48)(33,35)(34,37)(36,39)(38,40)(42,44)(45,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,44)(14,41)(15,42)(16,43)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,46)(30,47)(31,48)(32,45)(33,40)(34,37)(35,38)(36,39) );
G=PermutationGroup([[(1,19,6),(2,20,7),(3,17,8),(4,18,5),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,47,33),(14,48,34),(15,45,35),(16,46,36),(29,39,43),(30,40,44),(31,37,41),(32,38,42)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,42),(14,43),(15,44),(16,41),(17,27),(18,28),(19,25),(20,26),(29,48),(30,45),(31,46),(32,47),(33,38),(34,39),(35,40),(36,37)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,33),(2,39),(3,35),(4,37),(5,31),(6,47),(7,29),(8,45),(9,40),(10,36),(11,38),(12,34),(13,19),(14,26),(15,17),(16,28),(18,41),(20,43),(21,30),(22,46),(23,32),(24,48),(25,42),(27,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,12),(4,10),(5,22),(7,24),(13,15),(14,41),(16,43),(18,28),(20,26),(29,46),(30,32),(31,48),(33,35),(34,37),(36,39),(38,40),(42,44),(45,47)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,44),(14,41),(15,42),(16,43),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,46),(30,47),(31,48),(32,45),(33,40),(34,37),(35,38),(36,39)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3A | 3B | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | ··· | 6R | 12A | ··· | 12H | 12I | ··· | 12X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C6 | C6 | C6 | C4○D4 | C3×C4○D4 | 2+ 1+4 | C3×2+ 1+4 |
kernel | C3×C22.32C24 | C6×C22⋊C4 | D4×C12 | C3×C22≀C2 | C3×C4⋊D4 | C3×C22⋊Q8 | C3×C22.D4 | C3×C4.4D4 | C3×C42⋊2C2 | C22.32C24 | C2×C22⋊C4 | C4×D4 | C22≀C2 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4.4D4 | C42⋊2C2 | C2×C6 | C22 | C6 | C2 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 4 |
Matrix representation of C3×C22.32C24 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 12 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 | 0 |
0 | 0 | 12 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 11 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,12,1,1,11,0,0,1,0,0,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,12,1,1,11,0,0,0,1,1,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,12,12,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,1,12,0,1] >;
C3×C22.32C24 in GAP, Magma, Sage, TeX
C_3\times C_2^2._{32}C_2^4
% in TeX
G:=Group("C3xC2^2.32C2^4");
// GroupNames label
G:=SmallGroup(192,1427);
// by ID
G=gap.SmallGroup(192,1427);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,680,2102,555,1571]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=f^2=g^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations