Copied to
clipboard

G = C3×C22.32C24order 192 = 26·3

Direct product of C3 and C22.32C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C22.32C24, C6.1542+ 1+4, (C4×D4)⋊10C6, C4⋊D48C6, C22⋊Q87C6, C22≀C26C6, (D4×C12)⋊39C2, C4210(C2×C6), C4.4D48C6, C422C23C6, (C4×C12)⋊41C22, (C6×D4)⋊37C22, C24.18(C2×C6), (C6×Q8)⋊28C22, (C2×C6).358C24, C22.D44C6, (C2×C12).667C23, (C22×C12)⋊49C22, C23.11(C22×C6), (C23×C6).17C22, (C22×C6).93C23, C22.32(C23×C6), C2.6(C3×2+ 1+4), C4⋊C415(C2×C6), (C2×D4)⋊5(C2×C6), (C2×Q8)⋊4(C2×C6), C2.15(C6×C4○D4), (C3×C4⋊D4)⋊35C2, (C3×C4⋊C4)⋊71C22, (C2×C22⋊C4)⋊13C6, C22⋊C415(C2×C6), (C6×C22⋊C4)⋊33C2, (C22×C4)⋊10(C2×C6), C6.234(C2×C4○D4), (C3×C22⋊Q8)⋊34C2, (C3×C22≀C2)⋊14C2, C22.4(C3×C4○D4), (C2×C6).52(C4○D4), (C3×C4.4D4)⋊28C2, (C2×C4).25(C22×C6), (C3×C422C2)⋊12C2, (C3×C22⋊C4)⋊69C22, (C3×C22.D4)⋊23C2, SmallGroup(192,1427)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C22.32C24
C1C2C22C2×C6C22×C6C3×C22⋊C4C3×C4⋊D4 — C3×C22.32C24
C1C22 — C3×C22.32C24
C1C2×C6 — C3×C22.32C24

Generators and relations for C3×C22.32C24
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=f2=g2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 434 in 250 conjugacy classes, 146 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C23×C6, C22.32C24, C6×C22⋊C4, D4×C12, C3×C22≀C2, C3×C4⋊D4, C3×C4⋊D4, C3×C22⋊Q8, C3×C22.D4, C3×C4.4D4, C3×C422C2, C3×C22.32C24
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C4○D4, C24, C22×C6, C2×C4○D4, 2+ 1+4, C3×C4○D4, C23×C6, C22.32C24, C6×C4○D4, C3×2+ 1+4, C3×C22.32C24

Smallest permutation representation of C3×C22.32C24
On 48 points
Generators in S48
(1 19 6)(2 20 7)(3 17 8)(4 18 5)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 47 33)(14 48 34)(15 45 35)(16 46 36)(29 39 43)(30 40 44)(31 37 41)(32 38 42)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 42)(14 43)(15 44)(16 41)(17 27)(18 28)(19 25)(20 26)(29 48)(30 45)(31 46)(32 47)(33 38)(34 39)(35 40)(36 37)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 33)(2 39)(3 35)(4 37)(5 31)(6 47)(7 29)(8 45)(9 40)(10 36)(11 38)(12 34)(13 19)(14 26)(15 17)(16 28)(18 41)(20 43)(21 30)(22 46)(23 32)(24 48)(25 42)(27 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 12)(4 10)(5 22)(7 24)(13 15)(14 41)(16 43)(18 28)(20 26)(29 46)(30 32)(31 48)(33 35)(34 37)(36 39)(38 40)(42 44)(45 47)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 44)(14 41)(15 42)(16 43)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 46)(30 47)(31 48)(32 45)(33 40)(34 37)(35 38)(36 39)

G:=sub<Sym(48)| (1,19,6)(2,20,7)(3,17,8)(4,18,5)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,47,33)(14,48,34)(15,45,35)(16,46,36)(29,39,43)(30,40,44)(31,37,41)(32,38,42), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,48)(30,45)(31,46)(32,47)(33,38)(34,39)(35,40)(36,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,33)(2,39)(3,35)(4,37)(5,31)(6,47)(7,29)(8,45)(9,40)(10,36)(11,38)(12,34)(13,19)(14,26)(15,17)(16,28)(18,41)(20,43)(21,30)(22,46)(23,32)(24,48)(25,42)(27,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,12)(4,10)(5,22)(7,24)(13,15)(14,41)(16,43)(18,28)(20,26)(29,46)(30,32)(31,48)(33,35)(34,37)(36,39)(38,40)(42,44)(45,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,44)(14,41)(15,42)(16,43)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,46)(30,47)(31,48)(32,45)(33,40)(34,37)(35,38)(36,39)>;

G:=Group( (1,19,6)(2,20,7)(3,17,8)(4,18,5)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,47,33)(14,48,34)(15,45,35)(16,46,36)(29,39,43)(30,40,44)(31,37,41)(32,38,42), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,48)(30,45)(31,46)(32,47)(33,38)(34,39)(35,40)(36,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,33)(2,39)(3,35)(4,37)(5,31)(6,47)(7,29)(8,45)(9,40)(10,36)(11,38)(12,34)(13,19)(14,26)(15,17)(16,28)(18,41)(20,43)(21,30)(22,46)(23,32)(24,48)(25,42)(27,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,12)(4,10)(5,22)(7,24)(13,15)(14,41)(16,43)(18,28)(20,26)(29,46)(30,32)(31,48)(33,35)(34,37)(36,39)(38,40)(42,44)(45,47), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,44)(14,41)(15,42)(16,43)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,46)(30,47)(31,48)(32,45)(33,40)(34,37)(35,38)(36,39) );

G=PermutationGroup([[(1,19,6),(2,20,7),(3,17,8),(4,18,5),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,47,33),(14,48,34),(15,45,35),(16,46,36),(29,39,43),(30,40,44),(31,37,41),(32,38,42)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,42),(14,43),(15,44),(16,41),(17,27),(18,28),(19,25),(20,26),(29,48),(30,45),(31,46),(32,47),(33,38),(34,39),(35,40),(36,37)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,33),(2,39),(3,35),(4,37),(5,31),(6,47),(7,29),(8,45),(9,40),(10,36),(11,38),(12,34),(13,19),(14,26),(15,17),(16,28),(18,41),(20,43),(21,30),(22,46),(23,32),(24,48),(25,42),(27,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,12),(4,10),(5,22),(7,24),(13,15),(14,41),(16,43),(18,28),(20,26),(29,46),(30,32),(31,48),(33,35),(34,37),(36,39),(38,40),(42,44),(45,47)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,44),(14,41),(15,42),(16,43),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,46),(30,47),(31,48),(32,45),(33,40),(34,37),(35,38),(36,39)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C4D4E···4L6A···6F6G6H6I6J6K···6R12A···12H12I···12X
order12222222223344444···46···666666···612···1212···12
size11112244441122224···41···122224···42···24···4

66 irreducible representations

dim1111111111111111112244
type++++++++++
imageC1C2C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6C6C4○D4C3×C4○D42+ 1+4C3×2+ 1+4
kernelC3×C22.32C24C6×C22⋊C4D4×C12C3×C22≀C2C3×C4⋊D4C3×C22⋊Q8C3×C22.D4C3×C4.4D4C3×C422C2C22.32C24C2×C22⋊C4C4×D4C22≀C2C4⋊D4C22⋊Q8C22.D4C4.4D4C422C2C2×C6C22C6C2
# reps1122312222244624444824

Matrix representation of C3×C22.32C24 in GL6(𝔽13)

900000
090000
009000
000900
000090
000009
,
100000
010000
0012000
0001200
0000120
0000012
,
1200000
0120000
0012000
0001200
0000120
0000012
,
010000
100000
0001210
000100
001100
00011012
,
800000
080000
0001120
0012011
000011
00001112
,
100000
0120000
001000
00012012
00001212
000001
,
1200000
0120000
0012001
00012012
000010
000001

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,12,1,1,11,0,0,1,0,0,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,12,1,1,11,0,0,0,1,1,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,12,12,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,1,12,0,1] >;

C3×C22.32C24 in GAP, Magma, Sage, TeX

C_3\times C_2^2._{32}C_2^4
% in TeX

G:=Group("C3xC2^2.32C2^4");
// GroupNames label

G:=SmallGroup(192,1427);
// by ID

G=gap.SmallGroup(192,1427);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,680,2102,555,1571]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=f^2=g^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽